Human α-defensins neutralize toxins of the mono-ADP- ribosyltransferase family

نویسندگان

  • Chun KIM
  • Zoya SLAVINSKAYA
  • A. Rod MERRILL
  • Stefan H. E. KAUFMANN
چکیده

Various bacterial pathogens secrete toxins, which are not only responsible for fatal pathogenesis of disease, but also facilitate evasion of host defences. One of the best-known bacterial toxin groups is the mono-ADP-ribosyltransferase family. In the present study, we demonstrate that human neutrophil α-defensins are potent inhibitors of the bacterial enzymes, particularly against DT (diphtheria toxin) and ETA (Pseudomonas exotoxin A). HNP1 (human neutrophil protein 1) inhibited DTor ETA-mediated ADP-ribosylation of eEF2 (eukaryotic elongation factor 2) and protected HeLa cells against DTor ETA-induced cell death. Kinetic analysis revealed that inhibition of DT and ETA by HNP1 was competitive with respect to eEF2 and uncompetitive against NAD+ substrates. Our results reveal that toxin neutralization represents a novel biological function of HNPs in host defence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arginine-Specific Mono ADP-Ribosylation In Vitro of Antimicrobial Peptides by ADP-Ribosylating Toxins

Among the several toxins used by pathogenic bacteria to target eukaryotic host cells, proteins that exert ADP-ribosylation activity represent a large and studied family of dangerous and potentially lethal toxins. These proteins alter cell physiology catalyzing the transfer of the ADP-ribose unit from NAD to cellular proteins involved in key metabolic pathways. In the present study, we tested th...

متن کامل

Newly discovered and characterized antivirulence compounds inhibit bacterial mono-ADP-ribosyltransferase toxins.

The mono-ADP-ribosyltransferase toxins are bacterial virulence factors that contribute to many disease states in plants, animals, and humans. These toxins function as enzymes that target various host proteins and covalently attach an ADP-ribose moiety that alters target protein function. We tested compounds from a virtual screen of commercially available compounds combined with a directed poly(...

متن کامل

PARP16/ARTD15 Is a Novel Endoplasmic-Reticulum-Associated Mono-ADP-Ribosyltransferase That Interacts with, and Modifies Karyopherin-ß1

BACKGROUND Protein mono-ADP-ribosylation is a reversible post-translational modification that modulates the function of target proteins. The enzymes that catalyze this reaction in mammalian cells are either bacterial pathogenic toxins or endogenous cellular ADP-ribosyltransferases. The latter include members of three different families of proteins: the well characterized arginine-specific ecto-...

متن کامل

Helicobacter pylori induces mono-(adenosine 5'-diphosphate)-ribosylation in human gastric adenocarcinoma.

Mono-(adenosine 5'-diphosphate) (ADP)-ribosylation, which transfers an ADP-ribose from nicotinamide adenine dinucleotide (NAD) to an acceptor protein, is an important post-translational modification of cellular proteins. Several bacterial toxins are known to possess the mono-ADP-ribosyltransferase activity to catalyze this reaction as a possible pathogenic factor. Therefore, the aim of this stu...

متن کامل

Structural and Functional Consequences Induced by Post-Translational Modifications in α-Defensins

HNP-1 is an antimicrobial peptide that undergoes proteolytic cleavage to become a mature peptide. This process represents the mechanism commonly used by the cells to obtain a fully active antimicrobial peptide. In addition, it has been recently described that HNP-1 is recognized as substrate by the arginine-specific ADP-ribosyltransferase-1. Arginine-specific mono-ADP-ribosylation is an enzyme-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006